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Statistical effects in the multistream model for quantum plasmas
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~Received 18 December 2001; published 4 April 2002!

A statistical multistream description of quantum plasmas is formulated, using the Wigner-Poisson system as
dynamical equations. A linear stability analysis of this system is carried out, and it is shown that a Landau-like
damping of plane wave perturbations occurs due to the broadening of the background Wigner function that
arises as a consequence of statistical variations of the wave function phase. The Landau-like damping is shown
to suppress instabilities of the one- and two-stream type.
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I. INTRODUCTION

It has recently been pointed out@1# that the persisten
trend towards increased miniaturization of electronic devi
implies that quantum effects will become important also
certain transport processes, for which so far classical mo
have been sufficient. An example of such a generalized tr
port equation, in the form of the Schro¨dinger-Poisson equa
tion was analyzed in Ref.@1#. This analysis of a quantum
plasma is based on the hydrodynamic formulation of
Schrödinger-Poisson system, where macroscopic plas
quantities such as density and average velocity are in
duced. However, the analysis does not take into account
tistical ~or kinetic! effects associated with the finite width o
the probability distribution function. Kinetic effects are we
known in plasma physics, where they may lead to the p
nomenon of Landau damping.

The possibilities of using a general approach based on
Wigner function@2,3# was commented upon in Ref.@1#, but
only a simpler approach based on macroscopic quant
was used. Obviously, in doing so the possibilities of Land
like damping effects are lost. In fact, the possibility of o
taining Landau damping is also mentioned in Ref.@1#, al-
though in connection with a possible generalization to
multistream case, in accordance with the classical pictur
Dawson@4#. Particular attention was given to the classic
one- and two-stream instabilities in a cold plasma and it w
shown that the main quantum effect on the wave propaga
could be characterized as a generalized dispersion.

However, recently much attention, within the nonline
optics community, has been devoted to effects of par
wave incoherence, e.g., in the form of phase noise on a
stant amplitude wave@5–7#. In particular, it has been show
in Ref. @5#, where the Wigner transform was introduced a
means to study the modulational instability of an optic
plane wave, that the phase noise gives rise to a Landau
damping effect on the one-stream modulational instabilit

It is the purpose of the present work to generalize
analysis made in Ref.@1# by analyzing the properties of th
one- and two-stream instabilities in a quantum plasma us
the Wigner formalism and including the effect of phase no
developed in Ref.@5#. The results clearly show the suppres
ing effect on the instabilities due to the Landau-like damp
effect caused by the phase noise of the Wigner function.
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II. QUANTUM STATISTICAL DYNAMICS

In nonrelativistic many-body problems, the Wigner tran
formation is a useful means to derive equations describ
the quantum statistical dynamics of the system of inter
Thus, one is able to generalize the classical Vlasov equa
to a quantum mechanical regime, in the sense that the
namical equation for the Wigner function describes partic
moving in a self-consistent force field and in such a way t
the evolution equation for the Wigner function takes the fo
of its classical analog in the limit\→0.

Haaset al. @1# have considered the dynamics of a qua
tum plasma described by the nonlinear Schro¨dinger-Poisson
system of equations,

i\
]c i

]t
1

\2

2m

]2c i

]x2
1efc i50, ~1a!
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]x2
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«0
S (

i 51

N

^uc i u2&2n0D , ~1b!

where i 51, . . . ,N numbers the electrons as described
pure states, withc i being the wave function for each suc
state;f(x,t) is the electrostatic potential, whilem and 2e
are the mass and charge of the electrons, respectively.
fixed ion background has the densityn0. Following Ref.@5#,
we have introduced the Klimontovich statistical average,
noting it by ^•&. The statistical averaging becomes importa
when the wave function contains, e.g., a stochastically va
ing phase@5#.

In Ref. @1#, the one-stream and two-stream models ha
been investigated and the dispersion relation for the tw
stream instability was derived, showing an appearance
new, purely quantum branch. We note that the analysis
sented in Ref.@1# is based on the hydrodynamic formulatio
of the system~1!, where macroscopic plasma quantities, su
as density and average velocity, are introduced. Howe
this type of analysis does not take into account statist
properties of the wave function that may lead to a broad
ing of the probability distribution function. In fact, such e
fects may give rise to a Landau-like damping both in the c
of the single-stream and two-stream instabilities.
©2002 The American Physical Society17-1



is
n

c
al

ex

m
o

d
th
n
tio
ng
d

a

-

l
is of

wo-

m
am,

tion

ort

or-

ANDERSON, HALL, LISAK, AND MARKLUND PHYSICAL REVIEW E 65 046417
In order to take the statistical effects into account, it
convenient to introduce the Wigner distribution functio
Wi(x,t;p), corresponding to the wave functionc i(x,t), as

Wi~x,t;p!5
1

2p\E2`

1`

dy exp~ ipy/\!^c i* ~x1y/2,t !

3c i~x2y/2,t !&, ~2!

which has the property

E
2`

1`

dpWi~x,t;p!5^uc i~x,t !u2&. ~3!

Using Eq. ~2!, Eq. ~1a! can be formulated as a kineti
equation for the Wigner distribution, viz., the Wigner-Moy
equation

S ]

]t
1

p

m

]

]xDWi1
2e

\
f sinS \

2

]
←

]x

]
→

]p
D Wi50, ~4!

where the sine operator is defined in terms of its Taylor
pansion. Correspondingly, Eq.~1b! can be rewritten as

]2f

]x2
5

e

«0
S (

i 51

N E
2`

1`

dpWi2n0D . ~5!

Clearly, an equilibrium solution of Eqs.~4! and ~1b! is f
50 andWi5Wi0(p).

In order to study the modulational stability of the syste
~4! and ~5!, we introduce a small perturbation according t

Wi~x,t;p!5Wi0~p!1W̃iexp@ i ~Kx2Vt !#, ~6a!

f~x,t !5f̃exp@ i ~Kx2Vt !#, ~6b!

where uW̃i u!uWi0u and K and V are the wave number an
frequency of the perturbation, respectively. The fact that
background distributionWi0 is assumed to be only a functio
of p corresponds to the assumption of a plane wave func
with constant amplitude, but with a stochastically varyi
phase, the characteristic properties of which are expresse
Wi0(p). Linearizing Eqs.~4! and ~5!, we obtain

2 i S V2
p

m
K D W̃i1

2e

\
f̃ sinS i\K

2

]
→

]p
D Wi050, ~7a!

2K2f̃5
e

«0
(
i 51

N E
2`

1`

dpW̃i , ~7b!

wheref̃ is the potential perturbation. Note that the fact th
the unperturbed potentialf is f050 means that

(
i 51

N E
2`

1`

dpWi05n0 . ~8!
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Eliminating f̃ in Eqs.~7!, we obtain the dispersion rela
tion

2ie2m

«0\K3 (
i 51

N E
2`

1`

dp
1

p2mV/K
sinS i\K

2

]
→

]p
D Wi01150.

~9!

Using the fact that

2 sinS i\K

2

]
→

]p
D Wi0~p!5 i @Wi0~p1\K/2!

2Wi0~p2\K/2!#, ~10!

relation ~9! can be written in the form

15
e2m

«0\K3 (
i 51

N E
2`

1`

dp
Wi0~p1\K/2!2Wi0~p2\K/2!

p2Vm/K
.

~11!

Note that the polep5Vm/K gives rise to both a principa
part and an imaginary residue, as in the classical analys
Landau damping in plasma physics.

Let us now consider the cases of one-stream and t
stream plasmas.

A. One-stream plasma

The dispersion relation~11! reduces to

15
e2m

«0\K3E2`

1`

dp
W0~p1\K/2!2W0~p2\K/2!

p2Vm/K
,

~12!

where W0[W10. For a one-component Wigner spectru
with a deterministic phase, i.e., a monoenergetic be
W0(p) is given by

W0~p!5n0d~p2p0!, ~13!

which corresponds to a monochromatic plane wave func
with constant amplitude and phase. Equation~12! then yields

15
n0e2m

«0K2

1

~p02Vm/K !22\2K2/4
, ~14!

i.e.,

~V2v0K !25vp
21

\2K4

4m2
, ~15!

wherev0[p0 /m andvp
2[n0e2/m«0. The expression~15! is

exactly the same as the one obtained in Ref.@1#. It shows
that quantum effects give rise to wave dispersion for sh
wavelengths.

Let us now assume that the phasew(x) of the wave func-
tion c0 varies stochastically, and that the corresponding c
relation function is given by
7-2
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^exp@2 iw~x1y/2!#exp@ if~x2y/2!#&5e2pTuyu. ~16!

This corresponds to the Lorentzian spectrum

W0~p!5
n0

p

pT

~p2p0!21pT
2

, ~17!

and the dispersion relation~12! now yields

V2
p0

m
K5S vp

21
\2K4

4m2 D 1/2

2 i
pT

m
K. ~18!

This result implies a completely different effect, a Landa
like damping due to the width of the spectral distributi
describing the stochastic variation of the phase, i.e., du
the partial incoherence of the beam. Furthermore, the da
ing effect increases with increasing incoherence, i.e., w
increasingpT .

B. Two-stream plasma

According to Eq.~11!, the dispersion relation becomes

15
e2m

«0\K3E2`

1`

dpFW10~p1\K/2!2W10~p2\K/2!

p2Vm/K

1
W20~p1\K/2!2W20~p2\K/2!

p2Vm/K G . ~19!

For monochromatic beams with

Wj 0~p!5n0 jd~p2p0 j !, j 51,2, ~20!

we get from Eq.~19!

15
vp1

2

~V2p01K/m!22\2K4/4m2

1
vp2

2

~V2p02K/m!22\2K4/4m2
, ~21!

wherevp j
2 5e2n0 j /«0m andn011n025n0. If we follow Ref.

@1# and consider the symmetric case wheren015n02
5n0/2,p0152p02[p0, we obtain

V̄42S 112K̄21
H2K̄4

2
D V̄22K̄2S 12

H2K̄2

4
D

3S 12K̄21
H2K̄4

4
D 50 ~22!

from Eq. ~21!. Here we have introduced dimensionless va
ables according to

V̄5V/vp0 , K̄5p0K/vp0m, H5\vp0m/p0
2 .

~23!
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Equation ~22! is identical to the result obtained from th
hydrodynamical theory, as in Ref.@1#. The solution of Eq.
~22! is

V̄25
1

2
1K̄21

H2K̄4

4
6

1

2
A118K̄214H2K̄6, ~24!

which impliesV̄2,0 and concomitant instability if

~H2K̄224!~H2K̄424K̄214!,0. ~25!

This condition can be written as

12
1

K̄2
,

H2K̄2

4
,1, ~26!

which reduces to the well-known two-stream instability r
sult K2,1 in the classical limitH→0.

However, we infer from Eq.~25! that the quantum effec
has a subtle influence on the instability. Equation~25! im-
plies instability when the following condition is satisfied
(K̄,H) space, viz.:

H2
2 ~K̄ ![

4

K̄2 S 12
1

K̄2D ,H2,
4

K̄2
[H1

2 ~K̄ !. ~27!

A qualitative plot of this is given in Fig. 1~a similar figure
and discussion was given in Ref.@1#, but for later reference
we present the figure and a discussion related to it!.

Figure 1 implies that whenH50, instability occurs only
for 0,K̄,1. However, whenHÞ0, a more complicated
picture emerges. In fact, as is seen from Fig. 1, the quan
effect plays both a stabilizing and a destabilizing role. F
H.1, instability occurs for allK̄ such that 0<K̄<K1(H)

FIG. 1. Qualitative plot of the stability/instability regions for th
two-stream quantum plasma, neglecting stochastic damping.
7-3
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[2/H. Thus, for 1<H<2, the region of instability is in-
creased, whereas forH>2 it is decreased as compared to t
caseH50.

For H,1, instability occurs in twoK bands, viz., 0<K̄

<K2
(1)(H) and K2

(2)(H)<K̄<K1(H), whereK2
(1,2)(H) are

the two solutions of the equation 121/K̄25H2K̄2/4, i.e.,

K2
(1)~H !5

2

H2
~11A12H2!, ~28a!

K2
(2)~H !5

2

H2
~12A12H2!. ~28b!

For all values ofH,1, this implies a larger range of un
stable wave numbers as compared to the classical casH
50.

Let us now assume that the unperturbed Wigner distri
tions have Lorentzian form, in analogy to the case of a o
stream plasma, i.e.,

Wj 0~p!5
n0 j

p

pT j

~p2p0 j !
21pT j

2
, j 51,2. ~29!

From Eq.~19! we then obtain

15
vp1

2

@V2~p012 ipT1!K/m#22\2K4/4m2

1
vp2

2

@V2~p022 ipT2!K/m#22\2K4/4m2
. ~30!

Following Ref. @1#, we consider the case whenp01
52p02[p0 and n015n025n0/2, while for the statistical
broadening we assumepT15pT2[pT . Using the dimension-
less variables given by Eq.~23!, we get

~V̄1 iaK̄ !25
1

2
1K̄21

H2K̄4

4
6

1

2
A118K̄214H2K̄6,

~31!

where we have introduced the relative broadeninga
[pT /p0. Thus, in the limitpT→0, we regain the result o
Eq. ~25! and Ref.@1#. However, in the previously unstabl
region we now obtain

Im~V̄ !52aK̄1F1

2
~118K̄214H2K̄6!1/2

2
1

2
2K̄22

H2K̄4

4
G1/2

. ~32!

Again, the broadeninga tends to suppress the growt
and the condition Im(V̄).0 is now given by
04641
-
-

a,
1

K̄
F1

2
~118K̄214H2K̄6!1/22

1

2
2K̄22

H2K̄4

4
G1/2

.

~33!

In the classical limitH→0, the region of unstableK̄ val-
ues is reduced toK̄,Kc by the damping effect, where

Kc5
A12a2

11a2
,1. ~34!

Clearly, for a>1, no instability is possible for anyK̄. An-
other illustration of this is the small-K̄ expansion of the
growth rate, which reads

Im~V̄ !.~12a!K̄. ~35!

The stabilizing influence ofa in the general case ofH
Þ0 can be inferred as follows: Consider first the case
small K̄, while keepingH2K̄2/4;O(1), i.e., we investigate
the growth rate close to the stability boundary. In this lim
we obtain

Im~V̄ !.SA12
H2K̄2

4
2a D K̄, ~36!

which clearly shows the stabilizing effect of the damping.
particular, the stability threshold is now given by

H5
2

K̄
A12a2. ~37!

Qualitatively this implies a lowering of the upper thresho
curve for smallK̄ and a concomitant decrease of the regi
of instability.

Consider next the limitK̄@1, while still assuming
H2K̄2/4;O(1), i.e., we examine the effects of the dampin
on the narrow instability region, see Fig. 1. Introduce t
notation

Dh[12
H2K̄2

4
. ~38!

The growth rate can then be written as

Im~V̄ !.2aK̄1ADhS 1

2
2K̄2DhD , ~39!

and the stability thresholds become determined by

Dh5
1

4K̄2
6A 1

16K̄4
2a2. ~40!

Whena50, we regain the previous limit curvesDh50 and
Dh51/(2K̄2). The effect of a nonzeroa is to narrow the
instability region and to terminate it at the finite wave num
ber K̄51/(2Aa). For increasinga, the unstable region de
7-4
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creases and, as in the case of smallK̄, we expect the insta
bility to be essentially quenched fora*1.

III. DISCUSSION

In this work, we have presented an analysis of a mu
stream quantum plasma, including the effect of phase n
in the beam wave function. As compared the fluid desc
tion of a quantum plasma used in Ref.@1#, the present analy
sis is based on the quantum mechanical Wigner formali
The phase noise, or partial incoherence, of the beam w
functions is shown to give rise to a Landau-like dampi
effect, which tends to suppress the instabilities occurring
both the one and two beam cases. The damping rate
04641
i-
se
-

.
ve

n
in-

creases with increasing degree of incoherence as expre
by the width of the probability distribution function for th
phase noise. The physical origin of this damping effect is
noncoherent properties of the beam wave function as
posed to the wave-particle interaction characteristic of
conventional Landau damping. The Landau-like effect is
a true wave damping, but a conservative rearrangemen
the spectrum of the beam wave function. This phenome
has recently attracted considerable interest, both theoretic
@5,6# and experimentally@7#, within the area of nonlinear
optics, where it has been shown to suppress the modulati
and self-focusing instabilities@8–10#, e.g., for optical beams
in nonlinear photorefractive media. The present work is
attempt to extend this theory to a quantum plasma.
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