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Statistical effects in the multistream model for quantum plasmas
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A statistical multistream description of quantum plasmas is formulated, using the Wigner-Poisson system as
dynamical equations. A linear stability analysis of this system is carried out, and it is shown that a Landau-like
damping of plane wave perturbations occurs due to the broadening of the background Wigner function that
arises as a consequence of statistical variations of the wave function phase. The Landau-like damping is shown
to suppress instabilities of the one- and two-stream type.
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I. INTRODUCTION II. QUANTUM STATISTICAL DYNAMICS

. . In nonrelativistic many-body problems, the Wigner trans-

It has recehtly been pqlr?ted .Omi] that the per.5|sten.t formation is a useful mgans %/opderive equationsg describing
trend towards increased miniaturization of electronic dewce§he quantum statistical dynamics of the system of interest.
implies that quantum effects will become important also forrp s one is able to generalize the classical Viasov equation
certain transport processes, for which so far classical modejg 4 quantum mechanical regime, in the sense that the dy-
have been sufficient. An example of such a generalized trangrymical equation for the Wigner function describes particles
port equation, in the form of the Scltimger-Poisson equa- moving in a self-consistent force field and in such a way that
tion was analyzed in Refl]. This analysis of a quantum the evolution equation for the Wigner function takes the form
plasma is based on the hydrodynamic formulation of theof its classical analog in the limit—0.
Schralinger-Poisson system, where macroscopic plasma Haaset al.[1] have considered the dynamics of a quan-
quantities such as density and average velocity are intraum plasma described by the nonlinear Sclimger-Poisson
duced. However, the analysis does not take into account staystem of equations,
tistical (or kinetic) effects associated with the finite width of
the probability distribution function. Kinetic effects are well y
known in plasma physics, where they may lead to the phe- i 2V, he a—wi+e¢¢-=0 (1a
nomenon of Landau damping. gt 2m gx2 b

The possibilities of using a general approach based on the
Wigner function[2,3] was commented upon in Rdfl], but
only a simpler approach based on macroscopic quantities P
was used. Obviously, in doing so the possibilities of Landau- W
like damping effects are lost. In fact, the possibility of ob-
taining Landau damping is also mentioned in Réf], al-

though in connection with a possible generalization to theyherei=1,... N numbers the electrons as described by
multistream case, in accordance with the classical picture qbure states, withy; being the wave function for each such
Dawson[4]. Particular attention was given to the classicalstate; ¢(x,t) is the electrostatic potential, while and —e
one- and two-stream instabilities in a cold plasma and it wasre the mass and charge of the electrons, respectively. The
shown that the main quantum effect on the wave propagatiofixed ion background has the density. Following Ref.[5],
could be characterized as a generalized dispersion. we have introduced the Klimontovich statistical average, de-

However, recently much attention, within the nonlinearnoting it by(-). The statistical averaging becomes important
optics community, has been devoted to effects of partialvhen the wave function contains, e.g., a stochastically vary-
wave incoherence, e.g., in the form of phase noise on a conrg phaseg5].
stant amplitude wavgs—7]. In particular, it has been shown In Ref.[1], the one-stream and two-stream models have
in Ref.[5], where the Wigner transform was introduced as abeen investigated and the dispersion relation for the two-
means to study the modulational instability of an opticalstream instability was derived, showing an appearance of a
plane wave, that the phase noise gives rise to a Landau-likeew, purely quantum branch. We note that the analysis pre-
damping effect on the one-stream modulational instability. sented in Ref[1] is based on the hydrodynamic formulation

It is the purpose of the present work to generalize theof the systen{l), where macroscopic plasma quantities, such
analysis made in Refl] by analyzing the properties of the as density and average velocity, are introduced. However,
one- and two-stream instabilities in a quantum plasma usinthis type of analysis does not take into account statistical
the Wigner formalism and including the effect of phase noiseproperties of the wave function that may lead to a broaden-
developed in Refl5]. The results clearly show the suppress-ing of the probability distribution function. In fact, such ef-
ing effect on the instabilities due to the Landau-like dampingfects may give rise to a Landau-like damping both in the case
effect caused by the phase noise of the Wigner function. of the single-stream and two-stream instabilities.
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In order to take the statistical effects into account, it is E||m|nat|ng ¢ in Eqs (7) we obtain the d|spers|0n rela-
convenient to introduce the Wigner distribution function tign

W;(x,t;p), corresponding to the wave functiah(x,t), as

Wit ——i—fﬂh ipy/A) (Y (x+yl2t ZmrnEJJ in| 2K a)w 1=0
X dh(x—yl20)), @ ©
Using the fact that
which has the property
te ) 5 | iaK 4 ]
dpWix.tp) = ([ #i(x,D)[%). 3 2 sin < Wio(p) =i[Wio(p+7£K/2)
Using Eq.(2), Eq. (1a can be formulated as a kinetic —Wio(p—%K/2)], (10
ggﬂgt:gz for the Wigner distribution, viz., the Wigner-Moyal relation (9) can be written in the form
o _ 2 j Wio(p+7AK/2)—W,o(p—7K/2)
p 9 W (ﬁa a)w_o A 8¢K3 p—Qm/K '
ﬁ*ﬁ& 2 TS 5 xap) Wi=0 @ (11)

Note that the polgp=Qm/K gives rise to both a principal
part and an imaginary residue, as in the classical analysis of
Landau damping in plasma physics.

Let us now consider the cases of one-stream and two-

where the sine operator is defined in terms of its Taylor ex-
pansion. Correspondingly, E¢Lb) can be rewritten as

2

ﬂ_ © f dpW—ny]| . (5)  Stream plasmas.

ax?  €o\i=1

A. One-stream plasma
Clearly, an equilibrium solution of Eqg4) and (1b) is , , ,
~0 ar>1/dW-=\(/qV-o(p) as4) (1b) is & The dispersion relatiofil1) reduces to
I I .
In order to study the modulational stability of the system 2 . _ _
(4) and(5), we introduce a small perturbation according to 1= em f+ Wo(p+4K/2) —Wo(p— i K/2)
SOth - p_Qm/K ,
Wi(x,t;p) =Wio(p) + Wiexd i (Kx—Qt)],  (6a) (12)

where Wy=W,,. For a one-component Wigner spectrum
with a deterministic phase, i.e., a monoenergetic beam,
Wy(p) is given by

d(x,t)=dexdi(Kx—Qt)], (6b)

where |W,|<|W;o| andK and Q are the wave number and
frequency of the perturbation, respectively. The fact that the Wo(p)=ngd(p—pPo), (13
background distributiolV;, is assumed to be only a function

of p corresponds to the assumption of a plane wave functioMhich corresponds to a monochromatic plane wave function
with constant amplitude, but with a stochastically varyingWith constant amplitude and phase. Equatib® then yields
phase, the characteristic properties of which are expressed by

Wio(p). Linearizing Eqs(4) and(5), we obtain 1— nge’m 1

, 14
goK? (po— QMIK)2—1%2K?/4 19
(o pKW 2e_ (ﬁK a)w _o. (7 ie.,
—1 m +7¢sm 2 ap io—Y, (a)
h2K4
(Q=voK)?= 0t~ (19

—K? ¢—8 f dpW, (7b)
ot wherev,=py/m andwgE noe?/me. The expressionls) is
exactly the same as the one obtained in R&f. It shows
that quantum effects give rise to wave dispersion for short
wavelengths.

whered is the potential perturbation. Note that the fact that
the unperturbed potentiah is =0 means that

N Let us now assume that the phasg) of the wave func-
> dpWo=n,. (8 tion ¢ varies stochastically, and that the corresponding cor-
i=1J-w ' relation function is given by
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(exf —i@(x+y/2)lexdip(x—y/2)])=e PV (16) %
This corresponds to the Lorentzian spectrum
25
No Pt
Wo(p)= — ———% 17
™ (p_ p0)2+ p12' 2 stable
and the dispersion relatiafi2) now yields
H 15
52K 4 1/2
(O @K: w’2)+ —i EK (18) unstable
m 4m? m

This result implies a completely different effect, a Landau-

like damping due to the width of the spectral distribution
describing the stochastic variation of the phase, i.e., due t¢ 0s
the partial incoherence of the beam. Furthermore, the damp

ing effect increases with increasing incoherence, i.e., with
increasingpr . 0

stable

B. Two-stream plasma FIG. 1. Qualitative plot of the stability/instability regions for the

According to Eq.(11), the dispersion relation becomes two-stream quantum plasma, neglecting stochastic damping.
Equation (22) is identical to the result obtained from the
hydrodynamical theory, as in Rdfl]. The solution of Eq.
(22) is

(19 —, 1 —, HX* 1 — —
0P=5+K2+ +5V1+8K?+4H?K®, (29

4 2

—o0

e’m fw {Wlo(p+hK/2)—W10(p—hK/2)
= d
eoh K3 p—Om/K

N W p+7K/2) =W, p— 7 K/2)
p—QOm/K '

For monochromatic beams with R ] ) o
which impliesQ2?<0 and concomitant instability if

Wijo(P)=ng;8(P—Poj), [1=1.2, (20) — B
o : (HZK?2— 4)(H?K* — 4K+ 4)<0. (25
we get from Eq.(19) _ . :
This condition can be written as
“p1 1 HXK?

<
g =L

(26)

1=
(Q— poiK/m)2— 72K *4m? ==

R
(Q— poK/m)2—#2K44m?’

(21)

wherewgj = eznoj [egm andng;+ Ng,=ng. If we follow Ref.

[1] and consider the symmetric case wheng;=ng,
=Ng/2,p01= — Poz=Po, WeE obtain

214

Q4| 1+2K?+

o o HZEZ
e

x| 1—-K2+

2K4
: ) =0 (22)

from Eq.(21). Here we have introduced dimensionless vari-

ables according to

(_2: Q/wpo, E: poK/prm, H:ﬁwpom/pg

(23

which reduces to the well-known two-stream instability re-
sult K2<1 in the classical limiH—0.

However, we infer from Eq(25) that the quantum effect
has a subtle influence on the instability. Equati@s) im-
plies instability when the following condition is satisfied in

(K,H) space, viz.:

2 4 1 LY W
H_( )=ﬁ 1—ﬁ <H <ﬁ=H+( ). (27)
A qualitative plot of this is given in Fig. 1a similar figure
and discussion was given in R¢fl], but for later reference
we present the figure and a discussion related)to it
Figure 1 implies that whei =0, instability occurs only

for 0<K<1. However, whenH#0, a more complicated
picture emerges. In fact, as is seen from Fig. 1, the quantum
effect plays both a stabilizing and a destabilizing role. For

H>1, instability occurs for alK such that &sK=<K, (H)
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=2/H. Thus, for I=H=<2, the region of instability is in-

creased, whereas fét=2 it is decreased as compared to the

caseH=0.

For H<1, instability occurs in twd bands, viz., @K
<KM(H) and KD(H)<K=<K, (H), whereKE?(H) are
the two solutions of the equation-11/K2=H2K%4, i.e.,

K@(H)z%(l—h/l—Hz), (289
K<2>(H)=$(1—\/1—H7). (28b)

For all values ofH<1, this implies a larger range of un-
stable wave numbers as compared to the classical ldase
=0.

PHYSICAL REVIEW E 65 046417

HZE“ 1/2

4

1)1 — _ 1
o 2 2R 6\12_ T w2
<= 5 (1+8K?+4H?K®) - 5 —K
(33

In the classical limitH— 0, the region of unstabl val-
ues is reduced t& <K, by the damping effect, where

N
Ke.=

1+ a?

<1. (34)

Clearly, for =1, no instability is possible for anit. An-

other illustration of this is the small- expansion of the
growth rate, which reads
Im(Q)=(1-a)K. (35)

The stabilizing influence ok in the general case df

Let us now assume that the unperturbed Wigner distripu#0 can be inferred as follows: Consider first the case of
tions have Lorentzian form, in analogy to the case of a onesmall K, while keepingH?K?/4~0(1), i.e., we investigate

stream plasma, i.e.,

Roj _ Pj

Wio(p)= . j=1.2. (29
J T (p—poy) >+ P
From Eq.(19) we then obtain
2
1= @p1
[Q—(po1—ipr1)K/M]?=A2K*/4m?
2
w
2 (30

+ .
[Q— (pPoo—ipT2) KIM]2—#2K*/4m?

Following Ref. [1], we consider the case whepy;
=—po=PpPo and ng;=ng,=ny/2, while for the statistical
broadening we assungg ;= pr,=pt. Using the dimension-
less variables given by E@23), we get

2jc4
4

H

1 — —
SV1+8K?+4HK®,

2
K 2

N| -

(Q+iaK)2=

=

where we have introduced the relative broadeniag
=pr/po. Thus, in the limitpr—0, we regain the result of
Eq. (25 and Ref.[1]. However, in the previously unstable
region we now obtain

_ — |1 — —
IM(Q) = = aK+| = (1+8K*+4HK®)12
1 . HZKAY?
—E—KZ— 7 (32)

Again, the broade_ningx tends to suppress the growth,
and the condition ImQ2)>0 is now given by

the growth rate close to the stability boundary. In this limit
we obtain

which clearly shows the stabilizing effect of the damping. In
particular, the stability threshold is now given by

H 2?2
4

Ky

Im((_l):( 1— (36)

H=%/1—a2. (37
Qualitatively this implies a lowering of the upper threshold
curve for smallk and a concomitant decrease of the region
of instability.

Consider next the limitK>1, while still assuming
H2K2/4~0(1), i.e., we examine the effects of the damping

on the narrow instability region, see Fig. 1. Introduce the
notation

HZEZ
Ah=1- 7 (39
The growth rate can then be written as
_ _ 1
Im(Q)=—-aK+ Ah(E—KzAh), (39
and the stability thresholds become determined by
Ah ! + 1/ ! 2 (40
= — = — — .
4K? 16K*

Whena =0, we regain the previous limit curvésh=0 and

Ah=1/(2?2). The effect of a nonzera is to narrow the
instability region and to terminate it at the finite wave num-

ber K = 1/(2\/a). For increasingr, the unstable region de-
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creases and, as in the case of srialiwe expect the insta- creases with increasing degree of incoherence as expressed

bility to be essentially quenched for=1. by the width of the probability distribution function for the
phase noise. The physical origin of this damping effect is the
IIl. DISCUSSION noncoherent properties of the beam wave function as op-

posed to the wave-particle interaction characteristic of the

In this work, we have presented an analysis of a multi-conventional Landau damping. The Landau-like effect is not
stream quantum plasma, including the effect of phase noisa true wave damping, but a conservative rearrangement of
in the beam wave function. As compared the fluid descripthe spectrum of the beam wave function. This phenomenon
tion of a quantum plasma used in REE], the present analy- has recently attracted considerable interest, both theoretically
sis is based on the quantum mechanical Wigner formalisn{5,6] and experimentallyf7], within the area of nonlinear
The phase noise, or partial incoherence, of the beam wawueptics, where it has been shown to suppress the modulational
functions is shown to give rise to a Landau-like dampingand self-focusing instabilitie8—10], e.g., for optical beams
effect, which tends to suppress the instabilities occurring irin nonlinear photorefractive media. The present work is an
both the one and two beam cases. The damping rate irattempt to extend this theory to a quantum plasma.
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